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Abstract
Music Source Separation (MSS) is the process of separating individual audio signals from a mixed recording contain-
ing multiple sound sources, such as different musical instruments, vocals and ambient noise. Its various applications
include remixing, transcription and music recommendation. In the context of real acoustic recordings, the separation
task is particularly challenging due to the complexity and variability of acoustic instruments and recording conditions
such as room acoustics and microphone directivity. We propose the use of Non-negative Matrix Factorization (NMF)
algorithms for this task, and in our multi-channel setting, we aim to implement efficient, conditioned versions of this
algorithm to be applied to musical recordings performed in a known and controlled context. We investigate methods
of informing this algorithm by conditioning on temporal and spectral information from the instruments, that were
specifically registered at the time of the recording for this purpose. To this end, we conducted a professional-level
recording of a chamber music quintet.
We have compared our results with other state-of-the-art algorithms, obtaining comparable results on benchmark
datasets, and we have carried out subjective evaluation according to the MUSHRA protocol, where we see a good
performance of our algorithm. We observe a strong effect of the processing of the recording, which helps or hinders
the separation depending on the instrument. Our approach confirms the versatility of the FastMNMF algorithm and
the possibility of extending and making these algorithms more versatile. Audio results can be heard on our website.
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1 Introduction

Blind Source Separation (BSS) is the process of isolating individ-
ual unobserved sources in an observed mixture of multiple sources
[Cardoso [4]]. When applied to audio signals, it can be practised on
musical or non-musical signals, and each case presents a different
set of challenges and difficulties. In this paper, we will use mu-
sical audio signals, where source separation is a process intended
to be applied for tasks as diverse as musical rearrangement, mu-
sicological analysis, remixing or sampling, generating a karaoke
soundtrack, or creating musical scores.

Musical signals are generated by a complex process that begins
in the case of acoustic instruments with the vibration of musical
instruments and includes the acoustic radiation from the instru-
ment, the movements that accompany a musical performance, the
response of the recording space to the sound waves, the selection,
placement, and configuration of microphones, and the transforma-
tions that occur in post-production before a final, finished record-
ing is obtained [Bartlett and Bartlett [2]]. It is common for source
separation methods to attempt to use a priori knowledge of the
structure of the source signals and the nature of the transforma-
tions they have undergone [Vincent et al. [35]].

The complex and varying nature of these processes does not aid
the task of integrating this knowledge to the methods. Our work
proposes to address this task and its challenges by implementing
a conditionable state-of-the-art (SOTA) algorithm for source sep-
aration, and by gaining control over the music recording process
to refine the method, extend the a priori knowledge, and generate
specific material to improve the separation.

The Nonnegative Matrix Factorization (NMF) is a popular machine
learning algorithm that aims at decomposing a nonnegative matrix
X ≃WH into a product of two matrices W and H [Lee and Se-
ung [16]]. In our scenario, it decomposes the power spectrogram
of a punctual source, as the product of a frequency base matrix W
and a time activation matrix H. In a multichannel recording con-
dition, an extension called Multi-channel NMF (MNMF) [Ozerov
and Fevotte [21]] tries to take advantage of many recordings (e.g.
from several microphones) of the same sound to better separate the
sources by modelling a common source model but with different
spatial models.

The parameter optimization is either based on an Expectation-
Maximization (EM) algorithm [Dempster et al. [7]] or minimiza-
tion of Itakura-Saito divergence leading to Multiplicative update
rules (MUR) that guarantee the nonnegativity of the matrices
[Févotte and Idier [10]]. Another extension by Duong et al. [8]
proposes a statistical model of either punctual or diffuse sources by
considering a so-called full-rank spatial covariance matrix (SCM)
that summarizes the acoustic paths between each source and mi-
crophones and solves the parametrization estimation through an
EM algorithm. In Sawada et al. [26], a SCM/MNMF combination
with a MUR using an auxiliary function technique is designed and
outperforms other MNMF extensions. However, all those MNMF
algorithms suffer from high computational costs and a strong de-
pendence on their initialisation. Famous lighter versions that were
proposed are Auxiliary independent vector (AuxIVA [Ono [20]])
which is a degenerated version of the rank 1 SCM version, In-
dependent Low-Rank Matrix Analysis (ILRMA [Kitamura et al.
[14]]) which combines AuxIVA with an NMF model and FastM-
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NMF which decomposes the SCMs into a common basis and an
NMF decomposition of the power spectrograms.

We focus on FastMNMF, [Sekiguchi et al. [29]] which can be seen
as a trade-off between a lighter and more robust version, with-
out considering a degenerate rank 1 model that is less suitable for
a reverberant environment. Our proposal for improving the per-
formance of FastMNMF is to incorporate a priori knowledge by
having a more complete understanding and control of the record-
ing process by which the mixture was generated. To this end, we
tested our algorithm on simulated recording situations using the
Pyroomacoustics system [Scheibler et al. [27]] and the MUSDB18
dataset [Rafii et al. [23]]. We then carefully planned and executed
a recording session of a semi-professional chamber music quin-
tet under standard recording conditions for this type of music, as
shown in Figure 1. During this session, additional material was
played by the musicians and recorded in order to obtain data that
would facilitate optimal initialisation schemes for the algorithm.

Finally, due to the limited amount of data that can be recorded in
a session and the variety of possible configurations of SOTA sys-
tems, and to the fact that we cannot access the ground truth signal
from reverberant recordings, we decided to replace the traditional
objective evaluation schemes with subjective Multiple Stimuli with
Hidden Reference and Anchor (MUSHRA) [BS.1534-3 [3]] test in
order to evaluate the performance of our system.

Figure 1: Chamber music quintet recording session

2 State-of-the-Art Review

2.1 Models for Source Separation Algorithms

Source separation as a signal-processing task has received a lot of
interest since the turn of the century. Today, deep learning models
achieve SOTA results in very challenging contexts, such as under-
determined separation (more sources registered in the mixed sig-
nals than signals available) thanks to a supervised framework [Nu-
graha et al. [19]]. However, they do so in an uninterpretable way,
require a large amount of data to work, and while they achieve
great results in the traditional objective metrics, they often present
numerous artefacts and undesirable interference to the human lis-
tener. They also suffer from a poor domain adaptation issue mean-
ing that a “good separation performance” in room A may be highly
degraded in room B. On the other hand, unsupervised algorithms
such as Maximum Likelihood BSS or Non-Negative Matrix Fac-
torisation (NMF) may require more information about the signal,
but under certain conditions can produce excellent performance,
while providing a comprehensive explanation of how the algorithm
reached such results.

2.1.1 Linear Instantaneous Model

Standard BSS [Cardoso [4]] assumes the existence of n indepen-
dent signals s1(t), . . . , sn(t) and the observation of as many mix-
tures x1(t), . . . , xn(t). These mixtures being linear and instanta-
neous, i.e. xi(t) = Σn

j=1aijsj(t) for each i = 1, . . . , n. i.e. each
receptor xi is a linear combination of all source signals. BSS as-
sumes independence between the entries of the input vector s(t)
and primarily exploits ’spatial diversity’, i.e. different sensors re-
ceive different mixtures of the sources.

This is represented compactly by the mixing equation:

x(t) = As(t) (1)

Where s(t) = [s1(t), . . . , sn(t)]
T is an n × 1 column vector col-

lecting the source signals, vector x(t) = [x1(t), . . . , xn(t)]
T simi-

larly collects the n observed signals and the square n× n ‘mixing
matrix’ A contains the mixture coefficients.

The simple model x(t) = As(t) is parameterized by the pair
(A, q) made from the mixing matrix A and the density q for the
source vector s. The density of x = mathbfAs for a given pair
(A, q) is classically given by:

p(x;A, q) = |detA|−1q(A−1x) (2)

The goal of BSS is then to maximise the probability distribution
p(x;A, q) to estimate a matrix A.

2.1.2 Convolutional Model

If we consider the n previous sources in the short-time Fourier
transform (STFT) domain with F frequency bins and T time
frames. As mentioned in the introduction, NMF [Lee and Se-
ung [16]] is a type of BSS algorithm, that estimates a given non-
negative matrix X ∈ R+F×T as the product of a base matrix
W ∈ RF×K

+ and an activation matrix H ∈ RK×T
+ , such as

X ≃ WH. K is the number of basis, its optimal value is dis-
cussed below. The Multi-channel NMF (MNMF) extension [Oze-
rov and Fevotte [21]] estimates Xn ∈ RF×T×M

+ as the image of
source n perceived by all sensors, with the aim to estimate all Xn

with xftn = anfsftn, where the steering vectors anf are estimated
together with W and H.

These algorithms share the same source model, based on a Gaus-
sian mixture sftn ∼ NC(0, λftn) where:

λftn =

K∑
k=1

wnkfhnkt (3)

with wnkf and hnkt being components of matrices W and H of
the NMF decomposition, but use different spatial models which
can be rank-1 (xftn = anfsftn with anf the steering vector of
source n at frequency f , where the sources can then be derived
thanks to the demixing matrix Df = A−1

f = [a1f , . . . , aNf ] and
the relation sft = Dfxft) or full-rank (xftn is estimated with
Wiener filtering), which can be interpreted physically as related to
the acoustic model of the sources. This source model is also used
in other SOTA BSS algorithms, such as Independent Low-Rank
Matrix Analysis (ILRMA).

Sekiguchi et al. [29]’s FastMNMF proposes extensions to MNMF
by using a jointly diagonalisable full-rank spatial model and
proposing rank constraints for the spatial covariance matrix of each
source, thus adding a new way of incorporating a priori knowledge,
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the rank is derived from the directivity of the source: A highly
directional source will have a one-hot diagonal vector (only one
sensor is affected by a source), whereas a diffuse source will have
an all-one diagonal vector (each sensor is affected). The rank of
the spatial matrices is defined by the number of non-zero diagonal
terms in Gnf , and since once a parameter is set to zero, the update
rules keep it at 0, the rank can be obtained by initialising a given
number of diagonal terms to 0. Some of the proposed initialisations
are Random, Diagonal, Circular and Gradual.

Other ways of informing these types of algorithms are proposed as
a framework generalisation by Ozerov et al. [22], not only can the
spatial covariance model change between rank-1 and full-rank spa-
tial covariance matrices, but they propose flexibility in the type of
input representation (e.g. STFT or Equivalent Rectangular Band-
width), the problem dimensionality (related to the number of chan-
nels of the observed mixture M and the number of sources to sep-
arate N ), and the spectral power model (which may depend on the
type of source). This is done via N 9-dimensional parameters mod-
elling the spatial covariance and the spectral power (as a source-
filter model), with matrices modelling the narrowband spectral pat-
terns (Wi), the spectral pattern weights (Ui), the temporal pattern
weights (Gi) and the temporally localised patterns (Hi). These
can be initialised to desired values, frozen during part or all of the
training, and more.

2.2 Evaluation

A key element in source separation is the evaluation of the sepa-
ration. This task is complex because the human ear is very finely
tuned to unexpected or unusual sounds and noises, and it is diffi-
cult to find an evaluation criterion that can correctly detect what
our ear perceives. In general, there are two main ways of eval-
uating the results of a source separation approach: objective and
subjective, both of which have their advantages and disadvantages
[Zieliński et al. [37], Manilow et al. [17], Gusó et al. [12]].

Objective measures evaluate the quality of source separation by
performing a series of calculations that compare the output sig-
nals of a source separation system with the “ground truth” iso-
lated sources. The most commonly used are the Source-to-
Distortion Ratio (SDR), the Source-to-Interference Ratio (SIR),
and the Source-to-Artifact Ratio (SAR), as defined by Vincent et al.
[34], and the Scale-Invariant SDR (SI-SDR) as defined by Roux
et al. [24]. For these metrics, estimates of a source ŝi are assumed
to consist of four separate components, the target source (a version
of si modified by an allowed distortion) starget, the interference er-
ror einterf, the noise error enoise, and the artefacts eartif.

These four terms represent the part of estimated source ŝi per-
ceived as coming from the source si, from other unwanted sources
sj′ with j′ ̸= j, and from noises proceeding from sensors, distor-
tions, and artefacts. They are obtained through a decomposition on
orthogonal projections: with Π{y1, ...yk} the orthogonal projector
onto the subspace spanned by vectors y1, ...yk of length T , in the
shape of a T × T matrix. Three orthogonal projectors are defined:

Psj := Π {sj} , (4)

Ps := Π
{
(sj′)1≤j′≤n

}
, (5)

Ps,n := Π
{
(sj′)1≤j′≤n , (ni)1≤i≤m

}
(6)

to finally decompose ŝi as the sum of four terms:

starget := Psj ŝj , (7)

einterf := Psŝj − Psj ŝj , (8)

enoise := Ps,nŝj − Psŝj , (9)
eartif := ŝj − Ps,nŝj . (10)

More details of the computation are available in Vincent et al. [34],
but the decomposition now permits the definition of the metrics as:

SAR := 10 log10

(∥starget + einterf + enoise∥2
∥eartif∥2

)
(11)

SIR := 10 log10

(∥starget∥2
∥einterf∥2

)
(12)

SDR := 10 log10

( ∥starget∥2
∥einterf + enoise + eartif∥2

)
(13)

Though SDR is unquestionably the most popular of these three, it
presents a big problem in that it depends on the amplitude scaling
of the signal and so can be artificially inflated. This is addressed
by Roux et al. [24]’s SI-SDR metric which rescales the target by
finding the orthogonal projection of ŝi on the line spanned by target
si, and is defined as:

with etarget = αs for α = argminα|αsi − ŝi|2.

One of the main obstacles for implementation of these metrics is
the need for a clearly defined “ground truth” recording of the de-
sired source, restricting this kind of evaluation to sound sources
that are previously reduced to a 1-dimensional audio signal. On
the other hand, subjective measures are the gold standard for mea-
suring the quality of BSS and do not present this problem.

Subjective evaluation procedures involve human evaluators assign-
ing scores to the output of the source separation system. The
SOTA for subjective evaluation is called Multiple Stimuli with
Hidden Reference and Anchor (MUSHRA), the test should be de-
veloped following the International Telecommunications Union’s
recommendations [BS.1534-3 [3]]. It is ideally performed by well-
trained audio engineers in a sound-treated room and compares
the qualities of various conditioned sound files with a reference.
Among the files to compare should be a hidden reference and at
least one hidden anchor, an intentionally bad variant of the audio
which is traditionally obtained by low-pass filtering. These are
meant to provide boundaries across evaluators, and alert if any rat-
ing may have been incorrectly performed.

Crowd-sourced based variants have been implemented [Cartwright
et al. [5],Schoeffler et al. [28]] that can be performed by any fit
person with a pair of headphones, and these have been shown to be
an effective alternative.

2.3 Datasets

There are more than a few datasets available for source separation,
but the undisputed benchmark is the MUSDB18 dataset [Rafii et al.
[23]] (which also offers an uncompressed high-quality version),
used in the Music Demixing Challenge [Mitsufuji et al. [18]] and
many other community staples, it consists of 150 full-length music
tracks (approximately 10h duration) of various genres along with
their isolated drums, bass, vocals and “other” stems.

One of the drawbacks of this dataset is the limited information
about how the instruments were recorded and the processing that
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was applied to them, although the recordings are relatively clean,
allowing for post-processing and data augmentation using classic
mixing tools as well as room simulation tools such as Pyrooma-
coustics [Scheibler et al. [27]].

2.4 Sound Recording

When it comes to the recording of musical sound, there is no de-
fined consensus as to what are the best practices that lead to an op-
timal recording. There are, in fact, many ways to make a good mu-
sic recording, and the difficulty in standardisation lies in the vari-
ability of factors such as instrument quality, room characteristics,
room conditions at the time of recording, and the processing pref-
erences of the recording engineer. In the case of classical chamber
music, although it is possible to find recordings made in isolated
(between instruments) studio conditions, it is common practice to
record such groups playing together. It is also relevant to record in
a concert hall or reverberant recording studio, so as to emulate the
experience of the musicians playing live, and the experience of the
listener who would normally hear the music under these conditions
[Lang [15], Spiro and Schober [30]].

Although various microphone arrangements have been proposed
over the years, especially in recent years for recordings that focus
on spatialisation [Alexandridis et al. [1], Zhang et al. [36]], the
traditional approach of placing “spot” microphones close to each
individual source, combined with coupled microphones that cap-
ture segments or the whole ensemble and provide a natural spatial
component [Streicher and Dooley [31], Theile [32], Sarkar et al.
[25]], is often still the preferred method.

Recommendations and common practices for microphone place-
ment when recording classical instruments can be found in
Hugonnet and Walder [13] and Valentine [33]. Streicher and
Dooley [31] provides a complete overview of all common stereo
recording methods, suggesting the main configurations with 2, 3 or
4 microphones, their placements and characteristics, and present-
ing the advantages and disadvantages of common methods such as
Coincident Stereo Techniques (XY, Blumlein, MS Stereo), Near
Coincident Techniques (O.R.T.F, N.O.S, Faulkner, Binaural) and
Spaced Techniques.

It also exists more complex recording techniques used for three
or five loudspeakers restitution. Those practices as INA3, near-
coincident LCR, Widely Spaced Omni or Optimised Cardioid Tri-
angle (OCT) are configuration explained in Theile [32].

3 Methodology

3.1 Algorithm

This section presents our approach to the development of the
separation algorithm. It starts by explaining certain specifics of
Sekiguchi et al. [29]’s FastMNMF2 on which we based our model,
then introduces our improvements which were obtained by adding
constraints such as those brought by Ozerov et al. [22].

3.1.1 FastMNMF2

FastMNMF2 is introduced by Sekiguchi et al. [29] as a computa-
tionally efficient algorithm based on multichannel NMF for source
separation. FastMNMF2 takes the multichannel observed spec-
trogram X as argument, and outputs the separated multichannel
spectrograms corresponding to each source as if the source alone

was observed by the microphones. The multichannel NMF updates
sources matrices W and H, and spatial matrices Q and G̃, in or-
der to estimate the separated spectrograms. X ∈ R+F×T×M is the
observed spectrogram, W ∈ R+N×F×K is the spectral matrix,
H ∈ R+N×K×T is the activation matrix, Q ∈ CN×F×K is the
diagonaliser of G, and G̃ ∈ R+N×F×K the diagonal components
of the spatial matrix.

The outputs are the source images estimated by a Wiener filter writ-
ten as follows:

E[xftm|xft] = Q−1
f Diag

(
λftng̃nf∑
n λftng̃nf

)
Qfxft (14)

with λftn =
∑

k wnkfhnkt.

We obtain the parameters needed in Equation 14 by maximizing
the following log-likelihood:

log p(X|W,H, G̃,Q) =−
∑
f,t,n

(
x̃ftm

ỹftm
+ log ỹftm

)
+ T

∑
f

log |QfQ
H
f |

with x̃ftm = |qH
fmxft|2, ỹftm =

∑
n,k wnkfhnktg̃nm.

The update rules derived from the log-likelihood are shown in
Equation 15 to Equation 18.

wnkf ← wnkf

√√√√∑t,m hnktg̃nmx̃ftmỹ−2
ftm∑

t,m hnktg̃nmỹ−1
ftm

(15)

hnkt ← hnkt

√√√√∑f,m wnkf g̃nmx̃ftmỹ−2
ftm∑

f,m wnkf g̃nmỹ−1
ftm

(16)

g̃nm ← g̃nm

√√√√∑f,t,k wnkfhnktx̃ftmỹ−2
ftm∑

f,t,k wnkfhnktỹ
−1
ftm

(17)

qfm ← (QfVfm)
−1

em (18)

with Vfm =
∑

t xftỹ
−1
ftm.

Between each step, the matrices are normalized.

3.1.2 Split source model

In Ozerov et al. [22], a further factorization of the source model
is proposed. The matrices W and H are decomposed as in Equa-
tion 201.

W = EU (19)
H = TP (20)

with E ∈ R+N×F×L
,U ∈ R+N×L×K

T ∈ R+N×K×O
,P ∈

R+N×O×T . E and P are basis matrices holding prior information

1This notation differs from the original paper to avoid conflict with
previous names
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and are not updated in the main loop, while U and T are weight
matrices updated in the main loop. The goal of this new factoriza-
tion is to use prior information in W and H while keeping some
degree of freedom.

Under the assumption of E+ and P+ (pseudo inverses of E and P)
being non-negative matrices, we can modify the previous update
rules as in Equation 21 and Equation 22, with ⊙ the element-wise
product, N1, N2, D1, D2 the update coefficients.

U← E+

(
(EU)⊙

√
N2(G̃,H)

D2(G̃,H)

)
(21)

T←
(
(TP)⊙

√
N1(G̃,W)

D1(G̃,W)

)
P+ (22)

3.1.3 Use of prior information

We can use 3 types of prior information: spatial (Q and G̃), tem-
poral (H) or frequential (W).

• Frequential: W or E is filled with a dictionary of notes (com-
posed of the squared FFT of each individual note played by an
instrument). The matrix W is kept frozen for a given number of
iterations to let the algorithm adapt W at the end, whereas E is
always kept frozen.

• Temporal: H is filled with information related to the impulse
response. This part was not implemented.

• Spatial: delays and attenuation are given to G̃ and Q from the
sources and microphones positions. This part was not imple-
mented due to lack of precise information and the movement of
the musicians.

The dictionaries are needed for the frequential prior information.
Each source needs its own dictionary, so every instrument played a
chromatic scale covering all the notes played in the piece, including
pizzicato for the strings. Then the notes were extracted individually
from the scales and time-shifted to start at 0 seconds. Finally, the
squared FFT of each note was concatenated to form a matrix and
either stand as W or E in the algorithm.

3.2 Simulated Data

To test our implementation of the FastMNMF2 algorithm, we cre-
ated a room simulation with the Pyroomacoustics [Scheibler et al.
[27]] python library. Set on obtaining a simulation as close as pos-
sible to a real situation, we simulated a room with sources and
microphones similar to those used in the recording. The sources
are placed in a circular arc and the microphones used are cardioid.
Two microphones are placed in an AB configuration, the others are
used as spot (close) microphones.

This simulation allowed us to test the performance of our imple-
mentation on the MUSDB18 dataset [Rafii et al. [23]]. For all these
experiments, 4 different sources were used (bass, drums, others
and vocals). Using 6, 4 or 2 microphones for all cases of source
separation, overdetermined, determined and underdetermined re-
spectively, the algorithm parameters were also explored for opti-
mal computation.

3.3 Recordings

The sound recording session took place in the auditorium of the
regional conservatory in Aubervilliers (see Figure 1 and Figure 2).

This venue was chosen because of its pleasant acoustic response to
live classical music. The recorded quintet was comprised of two
violins, a cello, a clarinet, and a flute, playing an original piece
named Perdrix by composer Inès Lassègue.

Figure 2: Auditorium for the sound recording

An eight-microphone setup was used to record the quintet. Bidi-
rectional microphones (reference in Table 1) were used as spot mi-
crophones to minimise bleeding between instruments. Three other
microphones with cardioid polar patterns were added to record the
sound field used as the basis for the soundtrack. A three-mic setup
called LCR (Left-Centre-Right) allows the use of the phantom cen-
tre to be avoided and allows for better panning between sources. A
total of eight microphones makes it possible to test different con-
figurations with the source separation program: under-determined,
determined and over-determined.

Reference Directivity Instrument
Neumann U87 bidirectional Violin 1
Neumann U87 (spot) Violin 2

Audio-Technica 4050 Cello
Audio-Technica 4050 Clarinet

Schoeps MK6 Flute
DPA 4011 (L) cardioid Group
DPA 4011 (R) (setup LCR) Group

Schoeps MK4 (C) Group
Table 1: Reference of the microphones for the recording

The position of the LCR setup and the musicians was chosen prior
to the recording to avoid any symmetry effect when placed in the
centre. The final positions were determined after listening to the
room acoustics. The exact position on the stage (Figure 3) and
the order of the musicians were chosen to allow comfortable and
optimal communication during the recording.

Once the musicians were positioned, the bidirectional spot micro-
phones were positioned so that one lobe of the directional pattern
was aimed at the instrument. Bidirectional microphones are bet-
ter at rejecting close instrument bleed. The disadvantage of these
microphones is that they pick up as much from the front as from
the back. Therefore, in any setup of source and spot microphones,
the other four sources must be placed in the rejection area of the
directional pattern. For the violins, one of the two directional pat-
terns of the microphone was angled towards the floor, so that the
other was directed towards the ceiling to avoid bleeding. Also,
to avoid positions where acoustically symmetrical effects could
be heard (based on the radiation directional pattern of the violin
[Chaigne and Kergomard [6]]), the microphone was placed slightly
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off-centre in front of the body of the violin. For the cello, one of
the radiation patterns of the spot was also directed towards the in-
strument, off-centre (see Figure 4).

LCR Cello

Clarinet

Flute
Violin 2

Violin 1

Figure 3: Positions of musicians and microphones in the room

For the position of the two wind instruments, the spot microphones
were placed to record the sound radiating from the first holes of the
body of the instrument.

Procedure
There were three steps in the recording. First, the five musicians
played the original piece together. Then, each musician was asked
to play his part of the piece alone, this audio was meant to be com-
pared with the different results in the subjective test. Lastly, the
musician played a chromatic scale in the pitch range used in the
piece, with a metronome beat to ease the cutting that would be
done to generate the dictionary. The recording setup was main-
tained the same throughout.

Figure 4: Positions of the musicians and microphones

An impulse response measurement was carried out in the audito-
rium. The goal is to use this room response information to improve
the quality of source separation. Keeping the same setup without
the musicians and using a speaker JBL LSR2325P, five impulse
room responses were measured, one for each position of the mu-
sicians. These room responses were measured by reproducing a
chirp audio ascending from 50Hz to 10000Hz. The chirp audio
signal was generated by the Aurora a plug-in [Farina [9]] for Au-
dacity, that also generated the inverse filter use to compute the im-
pulse room response by convoluting the audio recorded and the
inverse filter.

Figure 5 presents the results obtained from the measurements us-
ing the analysis tool Acoustical Parameters Calculation Module.
These results are directly computed from measurements made at
the centre microphone of the LCR pair, for each source. To have

a value for the room response we chose the position of the flute as
the reference position. Since the microphone and the loudspeaker
are not omnidirectional, the following results include the influence
of the impulse responses and polar characteristics of both speakers
and microphones.

All the recordings, including the room response, were made using
Ableton, which was also used to mix the final audio.

Acoustic mixture
The reverberation time or decay time, called RT30, is the time re-
quired for sound to decay by 60 dB after the sound source has
stopped [11]. It is a measure of how long sound energy continues
to reverberate in a room after the sound source has ceased. RT30 is
often used to evaluate the acoustic quality of a space, as it can af-
fect speech intelligibility, music clarity, and overall sound quality.

EDT stands for Early Decay Time. It is defined as the time it takes
for sound in a room to decay by 10 dB after the sound source has
been turned off [11]. Unlike RT30, EDT focuses on the initial
decay of sound in a room, rather than the overall decay. EDT
is used to describe the clarity and definition of sound in a room.
Rooms with lower values have clearer and more distinct sounds,
while rooms with higher values have more diffuse and less clarity.
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Figure 5: EDT and RT30 of the auditorium by frequency bands

Both indices are used to characterise the response of the room to
an acoustic source (such as musicians playing). Information about
the room response permits, together with the positions of the musi-
cians, to describe the acoustic mix occurring during the recording.
First, values of the RT30 (Figure 5) indicate the delay for the reverb
to arrive after the sound is emitted. Then, EDT values (Figure 5)
give the delay when the reverb sound is under 10dB from the direct
sound. A difference of 10dB between two sources emitting at the
same time, tends to make the quietest source not audible. There-
fore, the impact of the reverb isn’t audible during moments when
two or more musicians are playing together with a recording mi-
crophone close to the source (under 3 meters). Only frequencies
over 4kHz have an EDT index higher than the RT30.

3.4 Mixing

In order to obtain a recording of standard quality, post-production
steps were carried out on the Ableton Live software to obtain from
the sound recording a mixed and mastered sound in stereo. The
audio processing chain (presented in figure Figure 6) consisted of
three steps. First, the signals captured during the recording went
through a processing chain including the following elements: a
delay, an equalizer, a compressor, and a gain. The next step was
to convert the eight monophonic signals into a stereo audio signal
with panning. Finally, this stereo signal passes through a process-
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Figure 6: Audio processing chain

ing chain for mastering, including an equalizer, a compressor and
a gain.

The monophonic tracks used at the beginning of the chain were
the tracks of the eight microphones of the recording session in the
auditorium, before any post-processing or trimming.

Mixing for the three tracks of the sound field microphones LCR,
consisted of the same effects regarding the filtering. However, ad-
justing the volume of the centre microphone is different. Automa-
tion on the volume level of the LCR microphones has also been
added, the goal being to reduce the noise level when the instru-
ments are silent. No dynamic compression is used in this process-
ing step. The aim being to limit the processing of the LCR mi-
crophones as much as possible, the added value of the mix will be
essentially provided by the modifications on spot microphones.

The signals of spot microphones were time shifted to compensate
for natural delays caused by their distance from the LCR micro-
phones. Those signals are then processed through equalizers and
compressors. Filters are adjusted to highlight certain characteris-
tics of the instrument in its spectrum to enhance the desired fre-
quency components of its sound. The threshold of the compressor
is set to decrease the crest factor for high playback levels and to
ignore the influence of low playback ones. When all the musicians
play loudly, more emphasis is put on the sounds captured by the
LCR than the auxiliary microphones. The level of the auxiliary
microphones was adjusted by listening to the balance of each mu-
sician in the ensemble recorded by the couple and heard during the
recording session.

Processing all monophonic tracks to one stereophonic audio in-
cluded some panning. The musicians have been positioned con-
sidering their layout as being in a single plane, with a single level
of depth. Concerning the stereophonic panoramic rendering, the
right and left signals of the LCR pair were placed at their respec-
tive ends, [13]. The central microphone was then placed in the
centre of the panoramic space. The spot microphones were placed
perceptually from right to left, taking as reference the stereophonic
sound of the LCR microphones. The stereo tracks then go through
a mastering effect chain consisting of an equalizer, a compressor,
and a gain. The equalizer is used to adapt the spectral balance. The
compressor is used to reduce the overall dynamic range in order to
reduce the differences in amplitude between the piano section of
the piece and forte passages. Finally, a gain is applied to the signal
to normalize its volume over the entire available dynamic range.

3.5 Evaluation

The heterogeneous nature of the available data meant that different
manners of evaluation were implemented so as to obtain a more
complete understanding of the quality of separation.

3.5.1 Objective Evaluation

Firstly, the classical SOTA objective metrics for source separation
(SAR, SIR, SDR, and SI-SDR) were implemented for the algo-
rithm results of the algorithm on the simulated data using imple-
mentations based on Scheibler et al. [27] and Roux et al. [24]. The
artificially generated acoustic mixtures were separated and com-
pared to the original stems as targets.

When attempting to evaluate the chamber music data, we were con-
fronted by the issue of not having a recording of each individual
instrument playing at the same time but isolated from the other in-
struments, which would be our target when calculating the objec-
tive metrics. We did have the spot microphones, but as expected,
they presented a lot of bleeding from the other instruments because
of the way they were intentionally set up. We also had recordings
of each musician playing alone, but they were all at different tem-
pos and any time change, even a minimum shift, greatly affects
the objective metrics. Because of this, we decided to implement a
subjective evaluation technique.

3.5.2 Subjective Evaluation

We decided to implement a MUSHRA-type crowd-sourced eval-
uation of the separation, via a web platform based on the web-
MUSHRA platform by Schoeffler et al. [28]. The interface can be
found in the Appendix or on our website. The test was hosted on
private servers and was open to the general public for five days.
The requirements were that the evaluator have a laptop, personal
computer, or smartphone with a stable connection, headphones, a
moderately quiet environment, and 15 minutes to dedicate to the
test.

The workflow of the evaluation interface was as follows: When
accessing the website, each evaluator was randomly directed to
one of the five instruments that was separated and the whole test
was done on that instrument. The test was introduced with a brief
explanation of the context and by stating the previously specified
evaluation conditions, the evaluator would then advance to a con-
sent page that stated data privacy conditions to which the evaluator
had to consent in order to perform the test, and the final step before
beginning the test was a volume setup page. The test did not give
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the option to go back once a step (configuration step or evaluation
step) was completed.

The test consisted of the evaluation of the quality of five audios,
while focusing on four different factors in the following order: the
overall quality, the interference, the distortion, and the artefacts.
The five audios were used in the four cases, though their order was
randomized and their condition was hidden. The five tracks of the
test were :

• a reference : the recording of the corresponding musician play-
ing by themselves, recorded on the spot microphone

• an anchor : created by adding distortion and equalization to the
recording of the spot microphone

• the separation on the instrument’s spot microphone before
processing the stems

• the separation on the instrument’s spot microphone after
processing the stems with the mix’s volume adjustment, equal-
ization, and compression

• the separation on the centre microphone before processing

The objective is to be able to study the effect of the mixing pro-
cess on our separation algorithm, as well as the effect of the spa-
tial disposition of the microphones and the acoustic mixing in the
recording room.

The first characteristic that was asked was to evaluate the overall
quality (“focus on the overall quality of the conditioned audios and
judge any and all detected differences between the reference and
the conditioned.”). The scale from 0 to 100 was explained as “0
means that the conditioned audio is much worse than the reference
audio and 100 means that the conditioned audio is equal or better
than the reference audio”, and the evaluators were asked to “Please
take your time to listen (and re-listen) and rate the audios”. The
interface only allows rating a track while it is playing and tracks are
played in loop until stopped. A specific segment can be selected
by the evaluator to listen to more closely. The waveform shown in
the graphic interface is that of the reference track.

After rating the overall quality, an informative page was shown,
explaining and defining the three characteristics that the evaluator
should now focus on while rating the quality.

The second characteristic was the interference, it was explained
as “the amount of sounds coming from instruments that are NOT
the main instrument” and the rating was clarified as “best score
(100) should be given if no secondary instruments are heard, and
the worst score (0) should be given if a secondary instrument is
heard as if it was the main instrument”. The definition of the third
characteristic (distortion) was “clipping, or modification of the in-
strument’s sound (“fuzzy”, “growling”, or “gritty” sounds, notice-
able absence of high or low frequencies, timbre modification)”,
and finally the artefacts were defined as “unexpected/non-musical
sounds that seem to have been generated artificially, or that don’t
belong to the instruments’ domain”.

A final page with a questionnaire asked the evaluator to specify
age, gender, years of musical training, and an email address, before
finishing the evaluation. The option of going on to evaluate another
instrument was also given if the evaluator so wished.

4 Experiments and results

4.1 Separation with MUSDB18 dataset

As explained in subsection 3.2, variations of the main parameters
F , K were explored to observe their impact on the source separa-
tion task. These tests were also performed to understand the role
of the parameters and how they improve or degrade the separation.
We also tested different source separation configurations, alternat-
ing the use of different microphones to be in the overdetermined,
determined or underdetermined cases, so as to assess the perfor-
mance of the algorithm in each case.

Main parameters of the algorithm: A first experiment was car-
ried out focusing on the main parameters F , K and their impact
on the source separation task, in order to understand their role and
how they improve or worsen the separation.

For these experiments, we first decided to set the parameter K =
32, following Sekiguchi et al. [29] who tested different values for
speech separation and show that optimal values are K = 16 and
K = 64 for almost all cases. However, since the higher the value,
the longer the computation time, we decided that K = 32 was a
good starting point. We then varied the parameter F to find the
optimal pair with this value of K.

Note: All the following values (in Table 2, Table 3, Table 4) result
from the average of 5 runs of the algorithm per song and for 5
songs from MUSEDB18 [Rafii et al. [23]].

SDR SI SDR SIR SAR
F = 512 2.41 0.04 8.52 6.04
F = 1024 4.18 2.13 11.16 7.23
F = 2048 3.88 2.49 11.65 7.23
F = 4096 4.27 2.99 13.14 7.6

Table 2: Impact of F on the source separation.

We then set F = 4096 (the optimal value for K = 32) and varied
the parameter K to observe how the separation performance was
affected. The number of iterations was set to 300.

SDR SI SDR SIR SAR
K = 2 1.05 -3.19 8.01 5.34
K = 4 2.06 -0.54 9.25 6.04
K = 8 3.41 1.68 11.47 7.04
K = 16 4.15 2.58 13.16 7.47
K = 32 4.27 2.99 13.14 7.6
K = 64 4.18 3.02 13.12 7.41
K = 128 3.78 2.47 12.52 7.3

Table 3: Effect of K (n components) on the source separation.

At the cost of a longer computation time, it seems that the higher
the F , the better the separation (Table 2). However, the number of
components K is more complex, although the intuition is the same
as for the F parameter. Experience shows that a value of K that
is too low imposes too many constraints on the algorithm, which
then does not perform sufficient separation (Table 3). Conversely,
a value of K that is too high gives the algorithm too much freedom
and creates too many minima, which means that the global mini-
mum will be harder to find and therefore will not result in the best
possible separation (Table 3).

8



3 Setup Configurations: In this experiment, different source
separation configurations were used to test the performance of the
algorithm in each. The main parameters used were F = 4096,
K = 32, and the number of iterations was set to n iter = 300.
As discussed earlier, these parameters were considered sufficient
and optimal to achieve convergence and the best separation with
the algorithm.

SDR SI SDR SIR SAR
overdetermined 3.95 2.58 12.82 7.27

determined 3.44 -6.5 10.56 6.66
underdetermined -4.25 -13.17 0.19 1.69

Table 4: Performance of source separation in 3 configurations

In the Table 4, we observe that the algorithm does not work well in
the underdetermined case. This result seems consistent, knowing
that this is not the intended use of FastMNMF2. However, when
the number of microphones is equal to or greater than the number
of sources, the algorithm performs well and gives a clear separation
of the different sources at each microphone.

Throughout the rest of this paper, experiments have been carried
out with the main parameters F = 4096, K = 32, n iter = 300,
and in the overdetermined case, as the results with FastMNMF2
are best in this configuration.

4.2 FastMNMF2 on real data

We were also able to test our algorithm on the real data of our
recording session. Thanks to our configuration and the control
we had over the various aspects (number of microphones, musi-
cal repertoire, mixing/mastering information), it was possible to
understand and test the limits of the algorithm when modelling the
recording process of a classical piece of music.

The first experiment we did was to test the behaviour of a blind sep-
aration in the different configurations: overdetermined, determined
and underdetermined. To keep the MUSHRA test short enough, we
started by evaluating some separations ourselves. As we observed
with the experiment on MUSDB18 (Table 4), the overdetermined
configuration performs well, while the others struggle to separate
the different sources. So the only configuration that really per-
formed a source separation task was the overdetermined one. The
resulting audio can be found on our GitHub page.

We also tested the algorithm at different stages of the mixing pro-
cess to understand which part of the mixing has the biggest impact
on the performance of the separation and whether it can be im-
proved (in blind separation). In particular, we found that compres-
sion and EQ effects tended to make the separation more complex
while adjusting the volume between the microphones greatly im-
proved it. Finally, we were surprised to find that the separation in
the final mix was significantly better for some instruments, which
we will analyse further in subsection 4.3.

4.2.1 With prior information in the dictionary

We used the dictionaries constructed from the scales played by the
musicians to inform our algorithm. The two use cases of the dictio-
naries described in subsubsection 3.1.2 involving E and W, proved
ineffective because the former required E+ to be non-negative, but
this requirement is not met regardless of the rank of E. So we
could not use Equation 21 and Equation 22.

Instead of using a split version, we constrained W itself with the
dictionaries. We forced the number of bases K to be equal to the
number of notes in the dictionaries (78 in our case). For a given
number of iterations, W was fixed and equal to the dictionaries.
We tried freezing it for different numbers of iterations without suc-
cess. When freezing W for 20, 40, 100, or 300 iterations (out of
300), the timbre of one of the two instruments was too distorted,
while the separation was not as precise as in the blind separation.
We speculate that this is due to an overly constrained model (as
W is less updated) and a lack of variety in the dynamics in the
dictionaries.

4.3 Subjective Evaluation

The online MUSHRA platform was active for five days and re-
ceived 69 evaluations from 63 evaluators. The average age of eval-
uators was 32.29 years, with the youngest being 21 years old, and
the oldest 72. The average years of musical training was 10.44
years, with 16 people having less than 5 years of musical training.

During the test, participants rate the audio quality of different audio
recordings compared to a reference. The MUSHRA methodology
implies that in the audios to evaluate, participants rate a hidden ref-
erence and an anchor. These results allow us to sort the participant
and exclude any incoherent responses from the results; if partici-
pants rated the hidden reference less than the other four audios, or
if they rated the anchor at the maximum score, their answers were
removed. In the Figure 7, comparing the figure with all evaluators
and the figure without incoherent responses, the anchor ratings are
generally lower, the higher rating goes down and the standard devi-
ation is also less. In addition, this test was designed for participants
with a trained ear for music listening. A comparison of the ratings
for the anchor audios shows that when participants with less than 5
years of musical training are excluded, the rating of the anchor for
overall quality descends. Looking at the Figure 7, it can be seen
that without the inexperienced participants, the higher rate and the
standard deviation also go down.
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Figure 7: MUSHRA results: evaluators choice

Excluding participants with incoherent answers and inexperienced
participants, the ratings of the anchor and the reference are more
consistent. The standard deviations are lower in both cases, and the
higher quartile of the anchor ratings becomes lower than the lower
quartile of the centre microphone ratings. In Figure 7 only the rat-
ing of the centre microphone is compared to the anchor, because
these are the lowest ratings of the different microphones (centre
microphone, spot microphone and spot microphone with process-
ing), as can be seen in Figure 8.

For the following observation, the results are calculated for the par-
ticipants excluding those with incoherent answers and those with-
out at least five years of musical training. This new subset consists
of 41 evaluations from 39 evaluators with an average age of 31.02
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Figure 8: MUSHRA results: mean across instruments. Average is
mean across Interference, Distortion & Artefacts

years old (Oldest: 58. Youngest: 21.), and an average of 14.54
years of musical study.

Firstly, we have chosen to focus on the results for the different
tests, considering the average across all instruments, in order to
assess the global capacity of our model. The Figure 8 compares
the statistical scores for overall quality, quality with a focus on
interference, quality with a focus on distortion, quality with a fo-
cus on artefacts and the average of these scores with a focus on
characteristics. This average could be seen as a “proxy” for the
overall quality, and it’s important to see that both the overall and
its “proxy” follow the same pattern, but the average scores slightly
higher throughout, which can be analysed as the fact that the per-
ceived quality is not covered by the traditional characteristics used
in the objective metrics.

These results confirm that the anchor is rated worse than the other
tracks, the separation at the centre microphone, the separation at
the spot microphone and the separation at the spot microphone af-
ter mixing. In most of the results where all the instruments were
responded to, the centre microphone separation was judged to be
of inferior or equal quality.

A surprising result comes from comparing the rating of the quality
of separation on the spot microphone before and after processing.
Intuitively, adding filters, delays and other effects to most of the
tracks used for multichannel separation would degrade the results.
However, none of the results obviously show a significant differ-
ence in quality between the two audios of the spots.

These conclusions should be treated with caution. Firstly, we only
have a limited number of participants. Secondly, the Figure 8 in-
cludes all five separations of the instrument as being of equal qual-
ity, but when listening to the audios and considering the disposition
of the recording, the quality of the separation is not the same, nor
is the acoustic mixture, the distance to the spot microphone or to
the other musicians. The conditions are therefore not the same and
the comparison is not fully possible.

Looking at the Figure 9, the ratings for each source show notice-
able variations. For example, the separation quality of the cello
is rated better with the spot microphone without effects, while the
best result for the flute is obtained with the spot microphone with
effects. This result is not surprising when you consider that the
equaliser for the cello had a strong effect on the timbre of the
instrument, whereas the flute was left almost untouched by the
equaliser, although its volume was greatly reduced.
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Figure 9: MUSHRA results: average overall ratings per instrument

The Figure 9 also shows that the source separation ratings for each
microphone are always lower for the clarinet than for the cello and
the two violins.

Contrary to our first hypothesis, adding a modification for mixing
does not drastically worsen the quality of source separation. A
more detailed study of each modification and effect added to the
tracks would be necessary to judge the degradation of the source
separation after the addition of processing.

Conclusion

Our work evaluates the performance of FastMNMF2 in a real
acoustic recording scenario. The influence of microphone type and
position has been studied in order to find an optimal arrangement
that allows to determine the limits of the algorithm in this situation
and during the mixing process. The algorithm was tested in blind
(without a priori information) and constrained (with a priori in-
formation) situations. Based on our listening to the tracks, the use
of a priori information (dictionary) in our implementation did not
help the separation and introduced distortion.

Subjective evaluation showed great value in assessing the separa-
tion algorithm, proving that good separation quality was achieved.
It also provided interesting insights, such as the fact that contrary
to expectations that post-recording effects would degrade the qual-
ity of the separation, with careful mixing and good use of the ef-
fects chain, the quality of the separation with the algorithm in a
blind situation is neither improved nor degraded, as explained in
the subsection 4.3.

Future directions include improving the performance of the algo-
rithm, both in a blind and in constrained situations. A better im-
plementation of the dictionaries (e.g. changing the update rules)
or the use of more complex dictionaries can be a good start. Sim-
ilarly, informing the algorithm about the acoustic mixture that oc-
curs during the recording should improve the performance of the
algorithm. A possible approach would be to constrain the algo-
rithm by adding the impulse room response as a priori information
to inform the algorithm. Further tests on the mixing process could
also help to clearly understand how each effect affects the separa-
tion, which looks promising for further research.

Regarding the evaluation of our algorithm, we can say that in order
to compare our work more accurately with other algorithms, ob-
jective evaluations can be performed on several algorithms, such
as ILRMA and AuxIVA, using the MUSDB18 dataset. It might
also be possible to develop different sound recording setups, such
as using loudspeakers in a concert hall or contact microphones on
the instruments, to try to obtain a “ground truth” that could be used
for objective evaluation.
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Appendix A - Results Comparison

Comparing Results: To compare the performance of this algorithm with other existing algorithms, the average of each objective metric
on the 4 sources has been taken into account. The overall SDR, overall SI-SDR, overall SIR and overall SAR values were calculated for
10 songs. The average scores were calculated using only the four spot microphones.
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Figure 10: Objective evaluation on overall scores

The range of overall scores is wide across the songs, these results are due to the fact that the 4 sources are not necessarily played on
all the songs. The calculation of these scores on empty tracks is very low (negative), which is why the overall scores can be strongly
influenced by songs with only one voice and one guitar.

In order to compare our work with other algorithms with more accuracy, objective evaluations on multiple algorithms such as ILRMA
and AuxIVA, with the MUSDB18 dataset, could have been performed.
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Appendix B - WebMushra

Figure 11: Subjective evaluation interface

Distortion Equalization

Instrument Clip
[dB]

Drive Makeup
Gain

Inverse notch filter
[Frequential Center[Hz]——Gain[dB]]

1st Violin -5 80 50 63——20 2k——13 2.5k——13
2nd Violin -5 80 50 63——20 2k——13 2.5k——13
Clarinet -3 60 50 80——20 1.25k——14 1.6k——14

Cello -3 60 50 80——20 1k——1 1.25k——20 1.6k——1
Flute -3 60 50 63——20 80——20 1k——20

Table 5: MUSHRA anchor creation parameters
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Appendix C - Subjective Evaluation
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Figure 12: Boxplot of MUSHRA scores for individual instruments
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Figure 13: Boxplot of MUSHRA scores for individual instruments
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Figure 14: Boxplot of MUSHRA scores for individual instruments
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Clarinet
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Figure 15: Boxplot of MUSHRA scores for individual instruments
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Figure 16: Boxplot of MUSHRA scores for individual instruments
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